《上帝掷骰子吗 网络作家》

下载本书

添加书签

上帝掷骰子吗 网络作家- 第54部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
有多奇怪。”到目前为止,我们手里已经攥下了超过一打的所谓“解释”,而且它的数目仍然有望不断地增加。很明显,在这些花样繁多的提议中间,除了一种以外,绝大多数都是错误的。甚至很可能,到目前为止所有的解释都是错误的,但这却并没有妨碍物理学家们把它们创造出来!我们只能说,物理学家的想象力和创造力是非凡的,但这也引起了我们深深的忧虑:到底在多大程度上,物理理论如同人们所骄傲地宣称的那样,是对于大自然的深刻“发现”,而不属于物理学家们杰出的智力“发明”
  ?
  但从另外一方面看,我们对于量子论本身的确是没有什么好挑剔的。它的成功是如此巨大,以致于我们除了咋舌之外,根本就来不及对它的奇特之处有过多的评头论足。从它被创立之初,它就挟着雷霆万钧的力量横扫整个物理学,把每个角落都塑造得焕然一新。
  或许就像狄更斯说的那样,这是最坏的时代,但也是最好的时代。
  量子论的基本形式只是一个大的框架,它描述了单个粒子如何运动。但要描述在高能情况下,多粒子之间的相互作用时,我们就必定要涉及到场的作用,这就需要如同当年普朗克把能量成功地量子化一样,把麦克斯韦的电磁场也进行大刀阔斧的量子化——建立量子场论(quantumfieldtheory)。这个过程是一个同样令人激动的宏伟故事,如果铺展开来叙述,势必又是一篇规模庞大的史话,因此我们只是在这里极简单地作一些描述。这一工作由狄拉克开始,经由约尔当、海森堡、泡利和维格纳的发展,很快人们就认识到:原来所有粒子都是弥漫在空间中的某种场,这些场有着不同的能量形态,而当能量最低时,这就是我们通常说的“真空”。因此真空其实只不过是粒子的一种不同形态(基态)而已,任何粒子都可以从中被创造出来,也可以互相湮灭。狄拉克的方程预言了所谓的“反物质”的存在,任何受过足够科普熏陶的读者对此都应该耳熟能详:比如一个正常的氢原子由带正电的质子和带负电的电子组成,但在一个“反氢原子”中,质子却带着负电,而电子带着正电!当一个原子和一个“反原子”相遇,它们就轰隆一声放出大量的能量辐射,然后双方同时消失得无影无踪,其关系就符合20世纪最有名的那个物理方程:e=mc^2!
  最早的“反电子”由加州理工的安德森(carlanderson)于1932年在研究宇宙射线的时候发现。它的意义是如此重要,以致于仅仅过了4年,诺贝尔奖评委会就罕见地授予他这一科学界的最高荣誉。
  但是,虽然关于辐射场的量子化理论在某些问题上是成功的,但麻烦很快就到来了。
  1947年,在《物理评论》上刊登了有关兰姆移位和电子磁矩的实验结果,这和现有的理论发生了微小的偏差,于是人们决定利用微扰办法来重新计算准确的值。但是,算来算去,人们惊奇地发现,当他们想尽可能地追求准确,而加入所有的微扰项之后,最后的结果却适得其反,它总是发散为无穷大!
  这可真是让人沮丧的结果,理论算出了无穷大,总归是一件荒谬的事情。为了消除这个无穷大,无数的物理学家们进行了艰苦卓绝,不屈不挠的斗争。这个阴影是如此难以驱散,如附骨之蛆一般地叫人头痛,以至于在一段时间里把物理学变成了一个让人无比厌憎的学科。最后的解决方案是日本物理学家朝永振一郎、美国人施温格(juliansschwiger)和戴森(freemandyson),还有那位传奇的费因曼所分别独立完成的,被称为“重正化”(renormalization)方法,具体的技术细节我们就不用理会了。虽然认为重正化牵强而不令人信服的科学家大有人在,但是采用这种手段把无穷大从理论中赶走之后,剩下的结果其准确程度令人吃惊得瞠目结舌:处理电子的量子电动力学(qed)在经过重正化的修正之后,在电子磁距的计算中竟然一直与实验值符合到小数点之后第11位!亘古以来都没有哪个理论能够做到这样教人咋舌的事情。
  实际上,量子电动力学常常被称作人类有史以来“最为精确的物理理论”,如果不是实验值经过反复测算,这样高精度的数据实在是让人怀疑是不是存心伪造的。但巨大的胜利使得一切怀疑都最终迎刃而解,qed也最终作为量子场论一个最为悠久和成功的分支而为人们熟知。虽然最近彭罗斯声称说,由于对赫尔斯…泰勒脉冲星系统的观测已经积累起了如此确凿的关于引力波存在的证明,这实际上使得广义相对论的精确度已经和实验吻合到10的负14次方,因此超越了qed(赫尔斯和泰勒获得了1993年诺贝尔物理奖)。但无论如何,量子场论的成功是无人可以否认的。朝永振一郎,施温格和费因曼也分享了1965年的诺贝尔物理奖。
  抛开量子场论的胜利不谈,量子论在物理界的几乎每一个角落都激起激动人心的浪花,引发一连串美丽的涟漪。它深入固体物理之中,使我们对于固体机械和热性质的认识产生了翻天覆地的变化,更打开了通向凝聚态物理这一崭新世界的大门。在它的指引下,我们才真正认识了电流的传导,使得对于半导体的研究成为可能,而最终带领我们走向微电子学的建立。它驾临分子物理领域,成功地解释了化学键和轨道杂化,从而开创了量子化学学科。如今我们关于化学的几乎一切知识,都建立在这个基础之上。而材料科学在插上了量子论的双翼之后,才真正展翅飞翔起来,开始深刻地影响社会的方方面面。在量子论的指引之下,我们认识了超导和超流,我们掌握了激光技术,我们造出了晶体管和集成电路,为一整个新时代的来临真正做好了准备。量子论让我们得以一探原子内部那最为精细的奥秘,我们不但更加深刻地理解了电子和原子核之间的作用和关系,还进一步拆开原子核,领略到了大自然那更为令人惊叹的神奇。在浩瀚的星空之中,我们必须借助量子论才能把握恒星的命运会何去何从:当它们的燃料耗尽之后,它们会不可避免地向内坍缩,这时支撑起它们最后骨架的就是源自泡利不相容原理的一种简并压力。当电子简并压力足够抵挡坍缩时,恒星就演化为白矮星。要是电子被征服,而要靠中子出来抵抗时,恒星就变为中子星。最后,如果一切防线都被突破,那么它就不可避免地坍缩成一个黑洞。但即使黑洞也不是完全“黑”的,如果充分考虑量子不确定因素的影响,黑洞其实也会产生辐射而逐渐消失,这就是以其鼎鼎大名的发现者史蒂芬?霍金而命名的“霍金蒸发”过程。
  当物质落入黑洞的时候,它所包含的信息被完全吞噬了。因为按照定义,没什么能再从黑洞中逃出来,所以这些信息其实是永久地丧失了。这样一来,我们的决定论再一次遭到毁灭性的打击:现在,即使是预测概率的薛定谔波函数本身,我们都无法确定地预测!
  因为宇宙波函数需要掌握所有物质的信息,而这些信息却不断地被黑洞所吞没。霍金对此说了一句同样有名的话:“上帝不但掷骰子,他还把骰子掷到我们看不见的地方去!”这个看不见的地方就是黑洞奇点。不过由于蒸发过程的发现,黑洞是否在蒸发后又把这些信息重新“吐”出来呢?在这点上人们依旧争论不休,它关系到我们的宇宙和骰子之间那深刻的内在关系。
  最后,很有可能,我们对于宇宙终极命运的理解也离不开量子论。大爆炸的最初发生了什么?是否存在奇点?在奇点处物理定律是否失效?因为在宇宙极早期,引力场是如此之强,以致量子效应不能忽略,我们必须采取有效的量子引力方法来处理。在采用了费因曼的路径积分手段之后,哈特尔(就是提出dh的那个)和霍金提出了着名的“无边界假设”
  :宇宙的起点并没有一个明确的边界,时间并不是一条从一点开始的射线,相反,它是复数的!时间就像我们地球的表面,并没有一个地方可以称之为“起点”。为了更好地理解这些问题,我们迫切地需要全新的量子宇宙学,需要量子论和相对论进一步强强联手,在史话的后面我们还会讲到这个事情。
  量子论的出现彻底改变了世界的面貌,它比史上任何一种理论都引发了更多的技术革命。核能、计算机技术、新材料、能源技术、信息技术……这些都在根本上和量子论密切相关。牵强一点说,如果没有足够的关于弱相互作用力和晶体衍射的知识,dna的双螺旋结构也就不会被发现,分子生物学也就无法建立,也就没有如今这般火热的生物技术革命。再牵强一点说,没有量子力学,也就没有欧洲粒子物理中心(cern),而没有cern,也就没有互联网的服务,更没有划时代的网络革命,各位也就很可能看不到我们的史话,呵呵。
  如果要评选20世纪最为深刻地影响了人类社会的事件,那么可以毫不夸张地说,这既不是两次世界大战,也不是共产主义运动的兴衰,也不是联合国的成立,或者女权运动,殖民主义的没落,人类探索太空……等等。它应该被授予量子力学及其相关理论的创立和发展。量子论深入我们生活的每一个角落,它的影响无处不在,触手可得。许多人喜欢比较20世纪齐名的两大物理发现相对论和量子论究竟谁更“伟大”,从一个普遍的意义上来说这样的比较是毫无意义的,所谓“伟大”往往不具有可比性,正如人们无聊地争论李白还是杜甫,莫扎特还是贝多芬,汉朝还是罗马,贝利还是马拉多纳,beatles还是滚石,阿甘还是肖申克……但仅仅从实用性的角度而言,我们可以毫不犹豫地下结论说:是的,量子论比相对论更加“有用”。
  也许我们仍然不能从哲学意义上去真正理解量子论,但它的进步意义依旧无可限量。
  虽然我们有时候还会偶尔怀念经典时代,怀念那些因果关系一丝不苟,宇宙的本质简单易懂的日子,但这也已经更多地是一种怀旧情绪而已。正如电影《乱世佳人》的开头不无深情地说:“曾经有一片属于骑士和棉花园的土地叫做老南方。在这个美丽的世界里,绅士们最后一次风度翩翩地行礼,骑士们最后一次和漂亮的女伴们同行,人们最后一次见到主人和他们的奴隶。而如今这已经是一个只能从书本中去寻找的旧梦,一个随风飘逝的文明。”虽然有这样的伤感,但人们依然还是会歌颂北方扬基们最后的胜利,因为我们从他们那里得到更大的力量,更多的热情,还有对于未来更执着的信心。
  
  第十二章 新探险四
  
  
  
  castor_v_pollux
  连载:量子史话出版社:作者:castor_v_pollux
  但量子论的道路仍未走到尽头,虽然它已经负担了太多的光荣和疑惑,但命运仍然注定了它要继续影响物理学的将来。在经历了无数的风雨之后,这一次,它面对的是一个前所未有强大的对手,也是最后的终极挑战——广义相对论。
  标准的薛定谔方程是非相对论化的,在它之中并没有考虑到光速的上限。而这一工作最终由狄拉克完成,最后完成的量子场论实际上是量子力学和狭义相对论的联合产物。当我们仅仅考虑电磁场的时候,我们得到的是量子电动力学,它可以处理电磁力的作用。大家在中学里都知道电磁力:同性相斥,异性相吸,量子电动力学认为,这个力的本质是两个粒子之间不停地交换光子的结果。两个电子互相靠近并最终因为电磁力而弹开,这其中发生了什么呢?原来两个电子不停地在交换光子。想象两个溜冰场上的人,他们不停地把一只皮球抛来抛去,从一个人的手中扔到另一个人那里,这样一来他们必定离得越来越远,似乎他们之间有一种斥力一样。在电磁作用力中,这个皮球就是光子!那么同性相吸是怎么回事呢?你可以想象成两个人背靠背站立,并不停地把球扔到对方面对的墙壁上再反弹到对方手里。这样就似乎有一种吸力使两人紧紧靠在一起。
  但是,当处理到原子核内部的事务时,我们面对的就不再是电磁作用力了!比如说一个氦原子核,它由两个质子和两个中子组成。中子不带电,倒也没有什么,可两个质子却都带着正电!如果说同性相斥,那么它们应该互相弹开,而怎么可能保持在一起呢?这显然不是万有引力互相吸引的结果,在如此小的质子之间,引力微弱得基本可以忽略不计,必定有一种更为强大的核力,比电磁力更强大,才可以把它们拉在一起不致分开。这种力叫做强相互作用力。
 
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架