《重生之神级学霸》

下载本书

添加书签

重生之神级学霸- 第154部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
“1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个Wèntí。于是四色猜想成了世界数学界关注的Wèntí,世界上许多一流的数学家都纷纷参加了四色猜想的大会战。从此。这个Wèntí在一些人中间传来传去,当时,三等分角和化圆为方Wèntí已在社会上臭名昭著,而四色瘟疫又悄悄地传播开来了。”
孔继道说起这些数学发展史上的事当真是如数家珍,就连每一个时间节点都能准确地说出,不得不让刘猛佩服,这得多爱数学这个鬼东西,才能达到这个地步呀,若是用这些精力去爱一个女人,把生日、牵手纪念日、接吻纪念日、上床纪念日、上床次数等等,全部准确记录下来的话,那一个女人得是怎样的感动呀?
数学家们大公无私,把女人这个物种建立了模型进行分析,大概在他们的脑子里,数学,才是最性感的女人。
“此后,四色猜想一直进展缓慢,直到1880年,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理。大家都认为四色猜想从此也就解决了,但其实肯普并没有证明四色Wèntí。”
“11年后,即1890年,在牛津大学就读的年仅29岁的赫伍德以自己的精确计算指出了肯普在证明上的漏洞。他指出肯普说没有极小五色地图能有一国具有五个邻国的理由有破绽。不久泰勒的证明也被Rénmen否定了。Rénmen发现他们实际上证明了一个较弱的命题五色定理。就是说对地图着色,用五种颜色就够了。”
“不过,让数学家感到欣慰的是,赫伍德没有彻底否定肯普论文的价值,运用肯普发明的方法,赫伍德证明了较弱的五色定理。这等于打了肯普一记闷棍,又将其表扬一番,总的来说是贬大于褒。真不知可怜的肯普律师是什么心情?”
说着,孔继道兴奋的满脸红光,还带着一点八卦的光辉,大概是在想着肯普这个倒霉蛋会是啥心情?
“追根究底是数学家的本性。一方面,五种颜色已足够,另一方面,确实有例子表明三种颜色不够。那么四种颜色到底够不够呢?这就像一个淘金者,明明Zhīdào某处有许多金矿,结果却只挖出一块银子,你说他愿意就这样回去吗?”
追根究底是数学家的本性,这点刘猛绝对同意,上次参加数学年会就可见一斑了,这是一个极其固执的群体,固执到一定程度,就是小心眼,眼睛里揉不得一点沙子,在追求数学上,这种精神是值得肯定的,不过,可惜的是,大多数人都把这种特质代入生活中。
“肯普是用归谬法来证明的,大意是如果有一张的五色地图。就会存在一个国数最少的极小五色地图,如果极小五色地图中有一个国家的邻国数少于六个,就会存在一个国数较少的地图仍为五色的。这样一来就不会有极小五色地图的国数,也就不存在五色地图了。这样肯普就认为他已经证明了四色Wèntí,但是后来Rénmen发现他错了。”
刘猛一听大乐,所谓的归谬法不就是自相矛盾的意思嘛,就好像一个傻蛋拿着一根矛和一面盾,号称自己这矛是世界上最锋利的,能够刺破所有的盾。又宣称自己的盾是最结实的,能够防护最锋利矛,归谬法的本质就是用你的最锋利的矛攻击你最结实的盾。得到相悖的结论。
就是神经病的推论。
“不过肯普的证明阐明了两个重要的概念,对以后Wèntí的解决提供了途径。第一个概念是构形。他证明了在每一张地图中至少有一个国家具有两个、三个、四个或五个邻国,不存在每个国家都有六个或更多个邻国的地图,也就是说。由两个邻国。三个邻国、四个或五个邻国组成的一组构形是不可避免的,每张地图至少含有这四种构形中的一个。”
“肯普提出的另一个概念是可约性。可约这个词的使用是来自肯普的论证。他证明了只要五色地图中有一国具有四个邻国,就会有国数减少的五色地图。自从引入构形、可约的概念后,逐步发展了检查构形以决定是否可约的一些标准方法,能够寻求可约构形的不可避免组,是证明四色Wèntí的重要依据。但要证明大的构形可约,需要检查大量的细节,这是相当复杂的。”
虽然孔继道尽量说的浅显。还是不自觉会引入一些数学上比较专业的概念,这些概念。即便没接触过,刘猛还是一听就懂,不过,随着孔继道在方便食堂二楼开讲,倒是吸引了几个其他学院的学生在旁偷听。
这些学生Kěnéng不认识孔继道,但是却没有一个人不认识刘猛,冰城工业大学的基础学部可是号称高中与大学的过渡,在这里,学生们虽然已经步入大学里,但是还保持着高中时候的学习习惯,依旧每个班级还有固定的自习室,同样的,大家对待学习也都非常认真,对于最优异者,刘猛同学,还是打内心中崇拜的,不自觉想跟刘猛认识一下的。
而从孔继道的口中听到刘猛同学竟然即将要被学校聘请为研究员,更是震惊地张大了嘴巴,一听孔继道聊起数学界的八卦事,作为学霸,自然就吸引了注意力。
这会儿,一听孔继道越说越专业,不由得皱了皱眉头,不过还是保持着相当大的兴趣,只觉得这个四色猜想还是很贴近生活的,不就是画地图嘛,到底是有什么门道。
这会儿,几个同学窃窃私语,大致都猜到了和神级学霸刘猛同学坐在一起聊天的老头儿就是孔继道老师,Zhīdào真相的同学不由得狠狠地瞪了孔继道,看那样子杀人的心都有了。
在场可有不少同学的处女挂献给了孔继道老师,当真是风轻云淡、不近女色,一出手却不Zhīdào破了多少同学的不挂金身,使得人生从此完满了那么一点点。
孔继道打开了话匣子,说的唾沫横飞,极为兴奋,“Rénmen发现四色Wèntí出人意料地异常困难,曾经有许多人发表四色Wèntí的证明或反例,但都被证实是错误的。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,Rénmen开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。”
“进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,美国著名数学家、哈佛大学的伯克霍夫利用肯普的想法,结合自己新的设想;证明了某些大的构形可约。后来美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,温恩从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。这种数量上的推进Sùdù真可谓十分缓慢。”
喝了一口啤酒,润了润嗓子,孔继道接着说道:“就这么一个简单的Wèntí,却难住了这个星球上的所有人,一直到电子计算机问世才算有了关键性的进展,由于演算Sùdù迅速提高,大大加快了对四色猜想证明的进程。就在1976年6月,在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,结果没有一张地图是需要五色的,最终证明了四色定理,轰动了世界。”
“这是一百多年来吸引许多数学家与数学爱好者的大事,当两位数学家将他们的研究成果发表的时候,当地的邮局在当天发出的所有邮件上都加盖了四色足够的特制邮戳,以庆祝这一难题获得解决。据说这一天的信件在收藏市场上还挺抢手的,每个数学爱好者都想购买一个留存。”
“这个定理有什么实际应用吗?”相比于孔继道的纯粹爱好数学,刘猛更加实际,偏向考虑应用,好奇地问道。这么些人前仆后继投身其中,难道跟研究《红楼梦》一样,仅仅是兴趣嘛,那不是闲着蛋疼嘛。
又补充道:“虽然任何平面地图可以只用四个颜色着色,但是这个定理的应用却相当有限,因为现实中的地图常会出现飞地,即两个不连通的区域属于同一个国家的情况,而制作地图时我们仍会要求这两个区域被涂上同样的颜色,在这种情况下,只用四种颜色将会造成诸多不便。”
孔继道回道:“你说的Bùcuò,实际中用四种颜色着色的地图是不多见的,而且这些地图往往最少只需要三种颜色来染色。此外,即便地图能够只用四种颜色染色,为了区分起见,也会采用更多的颜色,以提示不同地区的差别。”
看刘猛对这个四色猜想很是不以为然,孔继道又说道:“Wèntí的本身或许实际意义不大,但是为了解决这个猜想,一个多世纪以来,数学家们绞尽脑汁,所引进的概念与方法刺激了拓扑学与图论的生长、发展。”
“在四色Wèntí的研究过程中,不少新的数学理论随之产生,也发展了很多数学计算技巧。如将地图的着色Wèntí化为图论Wèntí,丰富了图论的内容。不仅如此,四色Wèntí在有效地设计各种日程表以及计算机的编码程序上都起到了推动作用。”(未完待续……)
PS:早就想写这个了,其实数学界的三大猜想都非常有意思。


 第二二零章:大赌棍

孔继道越说越是兴奋,到方便食堂二层吃饭的同学,听他讲着学术界的事,虽然听的似懂非懂的,却也着了迷,一时也觉得终身能够专注地追求一件事,也是一件非常神奇的事。
这一停下来,同学们无一不是翘首以待,等着孔老师继续讲下去,一时间连对孔老师的刻骨仇恨都给忘记了。
吃了一口牛肉馅饼,孔继道笑呵呵地说道:“要说这费马大定理,可比四色定理出名多了,首先就得先说说这费马,到底是何许人也!为什么要以这个人的名字来命名这个猜想。”
“费马,法国律师和业余数学家,他在数学上的成就不比职业数学家差,对数论最有兴趣,亦对现代微积分的建立有所贡献,被誉为业余数学家之王。”
刘猛一听顿时觉得好玩,费马这不就是一个在数学王国里打酱油的嘛,竟然取得了如此杰出的贡献,算得上是酱油党里的大牛了。
还记得以前无聊看帖子的时候就看到过关于费马的笑话,说是牛顿和莱布尼茨在争论一道微积分的题目,这时候费马拿着一个瓶子走过来,由于费马在微积分领域也很权威,两人就一起向费马讨教,请他评理,这两位都是大神呀,费马哪敢乱说,结果他摆了摆手,举着瓶子说:“我是来打酱油的。”
不过,科学研究领域,当真是很奇怪,除了这位业余数学家之外。还有一位同样是酱油党里的大帝,那就是爱因斯坦了,人家正儿八经的工作可是专利审查员。刘猛常自嘲,自己也是一个数学王国里的酱油党,倒是跟爱因斯坦挺象的,接触最多的还是专利。
“费马,1601年8月17日出生于法国南部图卢兹。小时候的费马虽称不上是神童,却也相当聪明,更为难得的是。费马学习十分努力,文科、理科都学得不差,不过。最喜欢的功课,还是数学。”
“17世纪的法国,男子最讲究的职业是当律师,因此。男子学习法律成为时髦。也使人敬羡,听从父亲的安排,费马成为了一名律师,并且在随后一直保持了这一份全职工作,而数学始终都是他的业余爱好。”
“费马一生从未受过专门的数学教育,数学研究也不过是业余爱好。然而,在17世纪的法国还找不到哪位数学家可以与之匹敌:他是解析几何的发明者之一;对于微积分诞生所作出的贡献仅次于牛顿和莱布尼茨;概率论的主要创始人,以及独撑17世纪数论天地的人。此外。费马对物理学也有重要贡献。一代数学天才费马堪称是17世纪法国最伟大的数学家。”
“费马独立于笛卡儿发现了解析几何的基本原理。1629年以前,费马便着手重写公元前三世纪古希腊几何学家阿波罗尼奥斯失传的《平面轨迹》。1630年用拉丁文撰写了仅有八页的论文《平面与立体轨迹引论》。就是这八页纸道出了费马的发现,每一个方程式对应着一条轨迹,可以描绘出一条直线或曲线。还在书中对一般直线和圆的方程、以及关于双曲线、椭圆、抛物线进行了讨论。”
“16、17世纪,微积分是继解析几何之后的最璀璨的明珠。人所共知,牛顿和莱布尼茨是微积分的缔造者,并且在其之前,至少有数十位科学家为微积分的发明做了奠基性的工作。但在诸多先驱者当中,费马仍然值得一提,他建立了求切线、求极大值和极小值以及定积分方法,对微积分做出了重大贡献。”
在坐的同学们听着纷纷点头,点着点着就开始咬牙切齿,原来《高等数学》里求切线、极值、定积分就是这老小子发现的,害得我们辛辛苦苦学习,结果期末考试还挂了,想到这一茬,不由得对眉飞色舞的孔继道投去仇恨的目光,不过还是很感兴趣聆听着下文,看看费马这个业余搞数学的,到底
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架