《上帝掷骰子吗--量子物理史话》

下载本书

添加书签

上帝掷骰子吗--量子物理史话- 第18部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!

的那个一维表格已经不适用了,我们需要一种新类型的表格,像下面这样的:

A B C D E
A 0 1 1。5 2。5 4。5
B 1 0 0。5 1。5 3。5
C 1。5 0。5 0 1 3
D 2。5 1。5 1 0 2
E 4。5 3。5 3 2 0

这里面,竖的是起点站,横的是终点站。现在这张表格里的每一个数字都是实实在在可以

观测和检验的了。比如第一行第三列的那个1。5,它的横坐标是A,表明从A站出发。它的

纵坐标是C,表明到C站下车。那么,只要某个乘客真正从A站坐到了C站,他就可以证实这

个数字是正确的:这个旅途的确需要1。5块车费。

好吧,某些读者可能已经不耐烦了,它们的确是两种不同类型的东西,可是,这种区别的

意义有那么大吗?毕竟,它们表达的,不是同一种收费规则吗?但事情要比我们想象的复

杂多了,比如玻尔的表格之所以那么简洁,其实是有这样一个假设,那就是“从A到B”和

“从B到A”,所需的钱是一样的。事实也许并非如此,从A到B要1块钱,从B回到A却很可

能要1。5元。这样玻尔的传统方式要大大头痛了,而海森堡的表格却是简洁明了的:只要

修改B为横坐标A为纵坐标的那个数字就可以了,只不过表格不再按照对角线对称了而已。

更关键的是,海森堡争辩说,所有的物理规则,也要按照这种表格的方式来改写。我们已

经有了经典的动力学方程,现在,我们必须全部把它们按照量子的方式改写成某种表格方

程。许多传统的物理变量,现在都要看成是一些独立的矩阵来处理。

在经典力学中,一个周期性的振动可以用数学方法分解成为一系列简谐振动的叠加,这个

方法叫做傅里叶展开。想象一下我们的耳朵,它可以灵敏地分辨出各种不同的声音,即使

这些声音同时响起,混成一片嘈杂也无关紧要,一个发烧友甚至可以分辨出CD音乐中乐手

翻动乐谱的细微沙沙声。人耳自然是很神奇的,但是从本质上说,数学家也可以做到这一

切,方法就是通过傅立叶分析把一个混合的音波分解成一系列的简谐波。大家可能要感叹

,人耳竟然能够在瞬间完成这样复杂的数学分析,不过这其实是自然的进化而已。譬如守

门员抱住飞来的足球,从数学上说相当于解析了一大堆重力和空气动力学的微分方程并求

出了球的轨迹,再比如人本能的趋利避害的反应,从基因的角度说也相当于进行了无数风

险概率和未来获利的计算。但这都只是因为进化的力量使得生物体趋于具有这样的能力而

已,这能力有利于自然选择,倒不是什么特殊的数学能力所导致。

回到正题,在玻尔和索末菲的旧原子模型里,我们已经有了电子运动方程和量子化条件。

这个运动同样可以利用傅立叶分析的手法,化作一系列简谐运动的叠加。在这个展开式里

的每一项,都代表了一个特定频率。现在,海森堡准备对这个旧方程进行手术,把它彻底

地改造成最新的矩阵版本。但是困难来了,我们现在有一个变量p,代表电子的动量,还

有一个变量q,代表电子的位置。本来,在老方程里这两个变量应当乘起来,现在海森堡

把p和q都变成了矩阵,那么,现在p和q应当如何再乘起来呢?

这个问题问得好:你如何把两个“表格”乘起来呢?

或者我们不妨先问自己这样一个问题:把两个表格乘起来,这代表了什么意义呢?

为了容易理解,我们还是回到我们那个巴士车费的比喻。现在假设我们手里有两张海森堡

制定的车费表:矩阵I和矩阵II,分别代表了巴士I号线和巴士II号线在某地的收费情况。

为了简单起见,我们假设每条线都只有两个站,A和B。这两个表如下:

I号线(矩阵I):
A B
A 1 2
B 3 1

II号线(矩阵II):
A B
A 1 3
B 4 1

好,我们再来回顾一下这两张表到底代表了什么意思。根据海森堡的规则,数字的横坐标

代表了起点站,纵坐标代表了终点站。那么矩阵I第一行第一列的那个1就是说,你坐巴士

I号线,从A地出发,在A地原地下车,车费要1块钱(啊?为什么原地不动也要付1块钱呢

?这个……一方面是比喻而已,再说你可以把1块钱看成某种起步费。何况在大部分城市

的地铁里,你进去又马上出来,的确是要在电子卡里扣掉一点钱的)。同样,矩阵I第一

行第二列的那个2是说,你坐I号线从A地到B地,需要2块钱。但是,如果从B地回到A地,

那么就要看横坐标是B而纵坐标是A的那个数字,也就是第二行第一列的那个3。矩阵II的

情况同样如此。

好,现在我们来做个小学生水平的数学练习:乘法运算。只不过这次乘的不是普通的数字

,而是两张表格:I和II。I×II等于几?

让我们把习题完整地写出来。现在,boys and girls,这道题目的答案是什么呢?

┏ ┓ ┏ ┓
┃ 1 2 ┃ ┃ 1 3 ┃
┃ 3 1 ┃ × ┃ 4 1 ┃ = ?
┗ ┛ ┗ ┛


*********
饭后闲话:男孩物理学

1925年,当海森堡做出他那突破性的贡献的时候,他刚刚24岁。尽管在物理上有着极为惊

人的天才,但海森堡在别的方面无疑还只是一个稚气未脱的大孩子。他兴致勃勃地跟着青

年团去各地旅行,在哥本哈根逗留期间,他抽空去巴伐利亚滑雪,结果摔伤了膝盖,躺了

好几个礼拜。在山谷田野间畅游的时候,他高兴得不能自已,甚至说“我连一秒种的物理

都不愿想了”。

量子论的发展几乎就是年轻人的天下。爱因斯坦1905年提出光量子假说的时候,也才26岁

。玻尔1913年提出他的原子结构的时候,28岁。德布罗意1923年提出相波的时候,31岁。

而1925年,当量子力学在海森堡的手里得到突破的时候,后来在历史上闪闪发光的那些主

要人物也几乎都和海森堡一样年轻:泡利25岁,狄拉克23岁,乌仑贝克25岁,古德施密特

23岁,约尔当23岁。和他们比起来,36岁的薛定谔和43岁的波恩简直算是老爷爷了。量子

力学被人们戏称为“男孩物理学”,波恩在哥廷根的理论班,也被人叫做“波恩幼儿园”



不过,这只说明量子论的锐气和朝气。在那个神话般的年代,象征了科学永远不知畏惧的

前进步伐,开创出一个前所未有的大时代来。“男孩物理学”这个带有传奇色彩的名词,

也将在物理史上镌刻出永恒的光芒。


上帝掷骰子吗——量子物理史话(5…3)

 版权所有:castor_v_pollux 原作   提交时间:2003…10…12 06:55:16



第五章 曙光



上次我们布置了一道练习题,现在我们一起来把它的答案求出来。


┏ ┓ ┏ ┓
┃ 1 2 ┃ ┃ 1 3 ┃
┃ 3 1 ┃ × ┃ 4 1 ┃ = ?
┗ ┛ ┗ ┛

如果你还记得我们那个公共巴士的比喻,那么乘号左边的矩阵I代表了我们的巴士I号线的

收费表,乘号右边的矩阵II代表了II号线的收费表。I是一个2×2的表格,II也是一个2×

2的表格,我们有理由相信,它们的乘积也应该是类似的形式,也是一个2×2的表格。

┏ ┓ ┏ ┓ ┏ ┓
┃ 1 2 ┃ ┃ 1 3 ┃ ┃ a b ┃
┃ 3 1 ┃ × ┃ 4 1 ┃ = ┃ c d ┃
┗ ┛ ┗ ┛ ┗ ┛

但是,那答案到底是什么?我们该怎么求出abcd这四个未知数?更重要的是,I×II的意

义是什么呢?

海森堡说,I×II,表示你先乘搭巴士I号线,然后转乘了II号线。答案中的a是什么呢?a

处在第一行第一列,它也必定表示从A地出发到A地下车的某种收费情况。海森堡说,a,

其实就是说,你搭乘I号线从A地出发,期间转乘II号线,最后又回到A地下车。因为是乘

法,所以它表示“I号线收费”和“II号线收费”的乘积。但是,情况还不是那么简单,

因为我们的路线可能不止有一种,a实际代表的是所有收费情况的“总和”。

如果这不好理解,那么我们干脆把题目做出来。答案中的a,正如我们已经说明了的,表

示我搭I号线从A地出发,然后转乘II号线,又回到A地下车的收费情况的总和。那么,我

们如何具体地做到这一点呢?有两种方法:第一种,我们可以乘搭I号线从A地到B地,然

后在B地转乘II号线,再从B地回到A地。此外,还有一种办法,就是我们在A地上了I号线

,随即在原地下车。然后还是在A地再上II号线,同样在原地下车。这虽然听起来很不明

智,但无疑也是一种途径。那么,我们答案中的a,其实就是这两种方法的收费情况的总

和。

现在我们看看具体数字应该是多少:第一种方法,我们先乘I号线从A地到B地,车费应该

是多少呢?我们还记得海森堡的车费规则,那就看矩阵I横坐标为A纵坐标为B的那个数字

,也就是第一行第二列的那个2,2块钱。好,随后我们又从B地转乘II号线回到了A地,这

里的车费对应于矩阵II第二行第一列的那个4。所以第一种方法的“收费乘积”是2×4=8

。但是,我们提到,还有另一种可能,就是我们在A地原地不动地上了I号线再下来,又上

II号线再下来,这同样符合我们A地出发A地结束的条件。这对应于两个矩阵第一行第一列

的两个数字的乘积,1×1=1。那么,我们的最终答案,a,就等于这两种可能的叠加,也

就是说,a=2×4+1×1=9。因为没有第三种可能性了。

同样道理我们来求b。b代表先乘I号线然后转乘II号线,从A地出发最终抵达B地的收费情

况总和。这同样有两种办法可以做到:先在A地上I号线随即下车,然后从A地坐II号线去B

地。收费分别是1块(矩阵I第一行第一列)和3块(矩阵II第一行第二列),所以1×3=3

。还有一种办法就是先乘I号线从A地到B地,收费2块(矩阵I第一行第二列),然后在B地

转II号线原地上下,收费1块(矩阵II第二行第二列),所以2×1=1。所以最终答案:b

=1×3+2×1=5。

大家可以先别偷看答案,自己试着求c和d。最后应该是这样的:c=3×1+1×4=7,d=3

×3+1×1=10。所以:

┏ ┓ ┏ ┓ ┏ ┓
┃ 1 2 ┃ ┃ 1 3 ┃ ┃ 9 5┃
┃ 3 1 ┃ × ┃ 4 1 ┃ = ┃ 7 10┃
┗ ┛ ┗ ┛ ┗ ┛

很抱歉让大家如此痛苦不堪,不过我们的确在学习新的事物。如果你觉得这种乘法十分陌

生的话,那么我们很快就要给你更大的惊奇,但首先我们还是要熟悉这种新的运算规则才

是。圣人说,温故而知新,我们不必为了自己新学到的东西而沾沾自喜,还是巩固巩固我

们的基础吧,让我们把上面这道题目验算一遍。哦,不要昏倒,不要昏倒,其实没有那么

乏味,我们可以把乘法的次序倒一倒,现在验算一遍II×I:

┏ ┓ ┏ ┓ ┏ ┓
┃ 1 3 ┃ ┃ 1 2 ┃ ┃ a b ┃
┃ 4 1 ┃ × ┃ 3 1 ┃ = ┃ c d ┃
┗ ┛ ┗ ┛ ┗ ┛

我知道大家都在唉声叹气,不过我还是坚持,复习功课是有益无害的。我们来看看a是什

么,现在我们是先乘搭II号线,然后转I号线了,所以我们可以从A地上II号线,然后下来

。再上I号线,然后又下来。对应的是1×1。另外,我们可以坐II号线去B地,在B地转I号

线回到A地,所以是3×3=9。所以a=1×1+3×3=10。

喂,打瞌睡的各位,快醒醒,我们遇到问题了。在我们的验算里,a=10,不过我还记得

,刚才我们的答案说a=9。各位把笔记本往回翻几页,看看我有没有记错?嗯,虽然大家

都没有记笔记,但我还是没有记错,刚才我们的a=2×4+1×1=9。看来是我算错了,我

们再算一遍,这次可要打起精神了:a代表A地上车A地下车。所以可能的情况是:我搭II

号线在A地上车A地下车(矩阵II第一行第一列),1块。然后转I号线同样在A地上车A地下

车(矩阵I第一行第一列),也是1块。1×1=1。还有一种可能是,我搭II号线在A地上车

B地下车(矩阵II第一行第二列),3块。然后在B地转I号线从B地回到A地(矩阵II第二行

第一列),3块。3×3=9。所以a=1+9=10。

嗯,奇怪,没错啊。那么难道前面算错了?我们再算一遍,好像也没错,前面a=1+8=9

。那么,那么……谁错了?哈哈,海森堡错了,他这次可丢脸了,他发明了一种什么样的

表格乘法啊,居然导致如此
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架