谑挛锞哂行巫矗敲锤窬郑╢ramework)是否就没有形状。现在,我们已经朝着这一问题的答案迈出了第一步。确实,我们正在处理的是一些特例,在这些特例中,格局的概念尚未出现;但是,一方面,在事物和图形之间存在一种联结,另一方面,在背景和格局之间存在一种联结。记住这点,我们便可用这种方式来表述我们的上述结果:形成图形的轮廓并不形成它的背景;如果后者具有形状的话,那么应该归功于其他的力量,而不是那些在它上面产生图形的力量。
轮廓的单侧功能或不对称功能也可以用下述的说法来描述,即轮廓有一个“内侧”和一个“外侧”。这种描述并不武断,而是受制于组织本身。在模棱两可的图形中,同侧既可以是内侧也可以是外侧,但是,当它是内侧时,就不可能同时是外侧,反之亦然;这种内侧或外侧的特征,在每种情形里均属于轮廓,而不是属于“我们”。
图形和背景的功能性依赖:作为格局的背景
迄今为止,我们描述了图形一背景的关系,我们说,图形有赖于背景。但是,这种描述,尽管在考虑实际的经验方面是十分完全的(这里,所谓实际的经验是指组织的产物),但是仍然没有考虑组织过程本身的一个决定因素。图形就其特征而言有赖于背景,图形出现在背景之上。背景起着一种格局的作用,由于图形悬浮于其中,因此格局决定了图形。我们越是使背景概念一般化,我们就越是发现这个规则具有更大的应用性。这里,倘若我们把自己限于较大图形上的较小图形方面,我们便可以根据背景对图形形状的影响来表明背景的格局特征。
我们用下述事实来说明问题,一个方块因其空间位置可以有两种不同的形状,即可以是一个正方形,也可以是一个菱形。从功能上讲,这两种形状实际上是不同的,哈特曼(Hartmann)借助闪光融合(flicker fusion)方法已经证明了这一点(参见第4章,边码pp.129f.);菱形比正方形具有更大的临界融合率(criticalfusion rate)。至于这两种形状中哪一种形状将会实际地实现,很大程度上取决于图形的定向(orientation)那就是说,如果图形的一条边平置在背景上,它便呈正方形,如果其一角站立,便呈菱形;或者,对此情况也可用不同的表述,当两条边呈水平状态时,将见到正方形,当一条对角钱呈水平状态时,将见到菱形。但是,这后一种阐述并不等于前一种阐述;确实,它根本不是一种确切的阐述。在取自科普费尔曼(Kopfermann)的两组相伴图形中,我们在图b中确实见到了菱形,那里的一条对角线是水平的,而矩形的两条边都是水平的,但是,在图a的两个图形中,这些关系倾向于相反,尽管图a的两个图形比其他图形更加模棱两可。 图55a看来十分像一个正方形,尽管它的对角线是水平的,而图56a则至少可以十分容易地看作是一个菱形,尽管它的两条边都是水平的。其中的原因是容易理解的。在图55a里面,小图的两条边与外框的边平行,可是在图56a里面,小图的对角钱与外框的边平行。于是,定向(作为决定我们图形形状的一个因素)不是一个绝对的问题,而是一个涉及格局的相对问题。即便如此,a图与b图相比,仍然是更加模棱两可的。这种情况也是容易理解的,因为在图55和图56中,外框本身处于一个更大的外框之中,这个更大的外框是本书的一页,因此,至少有两种格局在起作用。图b中的外框在方向上与本页的外框相一致,而且在效应上也一致;可是,图a中的外框与本页的外枢发生了冲突,较小的外框与里面的小图更接近,而较大的外框(即书的一页)则距离更远。由于这两种外框之间的矛盾,致使这些图样中的小图比其他图样中的小图更加模棱两可。最后,把正方形的效果与菱形的效果相比较,根据“绝对”走向,似乎正方形的效果更容易实现,于是,图56a很容易被看成是一个正方形了。在某种意义上讲,它完善了我们的图形,因为我们从哈特曼的实验中了解到,正方形要比菱形更简单一些。实际上,我们必须区别我们图样中的三个运作因素:两个外框和由此产生的小图的单一性。读者可以自己动手作图,在该图形中,这三种因素结合起来构成我们的四个图形。
图形和事物
在我们先前的讨论中,格局像行为环境中的部分那样是作为非事物(non-thing)而出现的。那么,图形有没有相应的事物特征呢?鲁宾提出过这个问题,他首先引入了我们的区分,而且已为后来的研究者们所进一步证实[参见苛勒(kohler),1929年,p.219]。在从背景向图形的转变过程中,一个场部分变得更加稳固,而在从图形向背景的转变过程中,一个场部分变得更加松散,这是在对这里出示的任何一个图样进行观察时将要证明的。此外,我们“关心的”是图形本身。我们记得的也是图形本身,而不是背景。我们在场的图形-背景的清晰度中找到了事物-非事物差异的开端。那么,它能告诉我们多少有关事物特性方面的事情呢?只有当我们描绘了图形和背景彼此区分的特性时,才会看到。
形状和背景的比较
在图57所示的模棱两可的图形中,我们把图形部分与背景部分彼此进行比较,总是发现后者(即背景部分)比较简单,这是就更大的一致性意义上而言的,我们也发现后者比前者清晰度更差。在十字形图样中,图形是十字而背景则是圆(见图54)或“彻掉进的正方形”(见图4)。 在图57中,黑白图形在形状上也有区别,即T形图对叶状图,但是各自的背景则彼此更加相似,两者都是条状的,黑色条纹在其下方边缘邻接着一根波形线。
图形和背景的颜色
图形和背景之间的清晰度差异是普遍的,不仅表现在它们的形状中,而且也表现在它们的颜色中。我们先前曾遇到过高度清晰和颜色之间的联结问题。因此,我们应当期望,同样的场,当它是图形时要比当它是背景时,看上去更加色彩鲜明一点。这一点已由事实加以证实。如果有个人将图54画成交替的绿色部分和相等的灰色部分,以致于这些部分不会由于它们的影线而不同,而是在颜色上产生差异,那么从一个十字形向另一个十字形的转变将伴随着清晰可见的颜色变化。例如,灰色背景上的一个绿十字形变成灰暗的绿色背景上的一个鲜明的红十字形。由此可见,在从图形向背景的转变过程中,绿色部分丧失其颜色,而在从背景向图形的转变过程中,红色部分却获得了其颜色。红色是一种对比色,因此,这项实验重新证明了我们在上一章讨论过的(见边码p.134)纯累积的对比理论(purely summativecontrast theory)的不适当性。我们的结果已由弗兰克夫人(MrsFrank)于1923年进行的实验进一步证实了。她将彩色纸剪成一个图形(该图形正好与图58中央的那个十字形相一致), 要求被试展现这个图形的后象,然后将该后象投射到我们的图样上来。如果在这图样中,中心部分被看作为图形,那么,在它上面的后象比起它被看作为倾斜的螺旋浆般的背景来,看上去更加色彩鲜明。
图形…背景差异的功能性证明
尽管这些差异在简单的观察中是清楚的和令人回味的,但它将大大改进它作为真实性的地位,只要我们能够证明存在着与此相应的功能性差异。这种证明已用众多方式被提供,以致于我们只须选择一些突出的例子便足够了。
我们的第一个想法是将哈特曼(Hartmann)的试验用于我们的区分之中。把一个黑白十字形以快速的连续形式呈现两次,然后测量临界的呈现时间,在这一时间里,当白色部分或黑色部分中的任何一个部分作为图形而出现时,闪烁(flicker)便停止。哈特曼用下述方式做到了这一点,该方法像先前的一样(见边码p.131),只有白色部分为闪烁提供客观条件,黑色部分一直是黑色。试验的结果表明,在四个系列的平均数中,对于白色十字形来说,比之对于白色背景来说,临界的呈现时间必须缩短12.3毫秒,两次呈现时间的缩短相差大约12%。可是,当一个场是背景和当一个场是图形时,两者之间融合难易程度的差别,或多或少与简单图形之间的差别是一样的。
我们描述的差异之一是,图形更加坚实(事物般的),背景更加松散(涂料般的)。如果这种情况确实的话,那么图形应当由比背景更强的力结合在一起,也就是说,该图形应当对另一种图形的入侵提供更大的抵抗力。这种推论在盖尔布和格兰尼特(Gelb and Granit)的独创性实验中得到证实。观察者通过一根管子注视图59,图59充斥了整个管子的开口处。图样是一个灰色背景上面的灰色十字。这个十字既可能比背景深一些,也可能淡一些。我们通过一个简单的装置,例如使用光线反射,使一个小的彩色斑点既可能产生自十字形的下臂,也可能产生自十字形右边的背景上,而使这个斑点可视的光线量也可以被测量出来。当然,场越暗,所需的彩色光的强度也越小,这两种测量的比较对于图形和背景之间的差异讲不出什么东西,因为所比较的这两个场部分将具有不同的亮度。该程序因而变得越加复杂了。对于任何一种图形一背景的结合,存在着第二种情况,即图形和背景的亮度交换了位置。于是,对每一种亮度的结合来说,必须确定四种阈限。如果d代表深灰而1代表浅灰,f代表图形而g代表背景,那么,四个阈限分别为(1)If,(2)Ig,(3)df(4)dg,在这四个阈限中,两个极端阈限和两个中间阈限分别属于同样的图形。通过把(1)与(2)以及(3)与(4)进行比较,我们可以直接确定场的组织对于在其中产生一个新图形所施加的影响,这是因为,在这些比较中,亮度是保持不变的。结果是清楚的:偶数的结合总是比对应的奇数的结合提供更低的阈限,这证明了我们的推论,即一个图形场要比一个背景场更有力地被组织起来。
事实上,这个结论并非强制性的,因为在这个图样里面图形场始终是两个场中较小的一个场,而且也因为先前的研究者们业已发现,在较大的场内确定的阈限要低于在较小的场内确定的阈限(这一结果已以一种相当复杂的方式被解释为累积的对比效应)。然而,格兰尼特于1924年进行的第二种实验(我将省略对该实验的描述)实际上使这种解释成为不可能了。当我们把这两种实验联系起来时,为我们的推论提供了充分的证明。
由M.R.哈罗尔(Harrower)和我本人提出的一些事实,为图形和背景的功能差别补充了证据。我们的研究涉及利布曼效应(Liebmann effect),这些研究使得我们发现硬色和软色之间的差别,后者比前者更明显地展示了利布曼效应。在上一章里(见边码P.127)我们已经报道了这方面的情况。但是,由于我们是通过使图形与其背景的亮度相等来研究利布曼效应的,于是便产生了这样的问题,即图形与背景的差异是否就是硬或软的差异。为了回答这个问题,我们首先颠倒图形…背景的结合,也即使用彩色背景和非彩色图形的办法,然后发展到把颜色既放入图形中又放入背景中。结果十分清楚:软和硬在图形中比在背景中更为重要。如果h代表硬色而S代表软色,f和g又分别代表图形和背景,则下列结合表示了组织的等级顺序,顶部提供了最清楚的清晰度,底部则提供了最佳的利布曼效应:
f g
(1) h h
(2) h s
(3 )s h
(4) s s
上述等级顺序是在量化实验中发现的,并在辨别实验和易读性(legibility)实验中得到进一步证实。我把后者简要地描述如下。在一些长宽各30厘米的灰色纸上书写一些字母,字母的高度为10毫米,宽度为1毫米,字母和背景都相等,其中之一着色,另一个则为非彩色。对于每一种颜色(红、黄、绿和蓝),都使用两张这样的纸,一张灰色纸上面写着彩色字母,另一张彩色纸上面写着灰色字母。每两张纸作为一对,贴在一间长房间的墙壁上。被试开始时站在距离墙壁30英尺的地方,然后要求他们描述所见的东西。接着,让他们朝墙壁移近3英尺,再作一次新的描述,嗣后,再朝墙壁移近3英尺,直到所有字母都被读出为止。下表提供了每两张纸的尺数的平均差异,颜色涉及字母而非背景:
红…灰 3.3
黄…灰 1.2
灰…蓝 7.9