【21】正如我们在规定词项时有时会犯错误一样,我们在思考它们时有时也会发生错误。例如,如果相同的谓项可直接属于多个主项,有些人知道一个主项,但忘记了另一个,并认为谓项不属于它的任何部分。。假如A自身可以属于B 和C,B和C以同样的方式属于所有D,然后如果他认为A属于所有B,B属于D,但A不属于任何C,C属于所有D,那么他对同一件事情自身既有知识又无知。再者,假如一个人对相同系列的词项会发生错误,例如,如果A属于B,B属于C,C属于D,并假如A属于所有B,但却不属于任何C,则他会同时既认为又不认为它属于。但是,结果是,他会实实在在地承认他不知道他所知道的事物吗?他在某种意义上知道A可以通过B而属于C,正如特称属于全称一样,所以他承认了根本不知道他在某种意义上是知道的东西,而这是不可能的。
在前一种情况中,当中项不属于相同的系列时,则没有什么阻止一个人认为一个前提与每个中项相关,或两个前提与一个中项相关。例如,A属于所有B,但不属于任何C,后两个都属于D,由此可以推出第一个前提或全体或部分地与另一个相反。因为如果有人设定A属于B所属于的事物的全体,并知道B属于D,则他就知道了A属于D。因而,如果他又认为A不属于C所属于的任何一个,那么他不认为A属于B所属于的事物的有些部分。但是,既认为它属于全部B所属于的事物的全体,然后又认为它不属于B所属于的事物的有些部分,这要么是一个无条件的反对,要么是部分的反对。
因而,这样思考是不可能的,但是并没有什么阻止人们认为一个前提与每个中项相关,或者两个前提与一个中项相关。例如,认为A属于所有B,B属于D,再者,A不属于任何C。这种错误与我们在论及特称事物时所犯的错误是一样的。例如,如果A属于所有B,B属于所有C,则A也属于所有C。然后如果有人知道A属于B所属于的事物的全体,那么他就知道了它属于C,但没有什么阻止不知道C存在。例如,如果A表示“两直角”,B表示“三角形”,C表示“可感的三角形”。因为一个人可能设定C不存在,尽管他知道每个三角形的内角之和等于两直角,所以他就同时知道和不知道同一件事情。因为知道每个三角形的内角和等于两直角,有着多种含义,要么是普遍的知识,要么是特殊的知识。这样,借助普遍知识,他知道C等于两直角,但根据特殊知识他却不知道,因而他的无知与他的知识并不相反对。
《曼诺篇》中学习就是回忆的理论,其情况也相同。我们根本没有发现我们以前具有的对个体的知识,但是在归纳过程中,我们发现确实获得了关于特殊事物的知识,就像我们回忆起它们一样。有些事情我们是直接知道的,例如,如果我们知道X 是一个三角形,我们就知道它的内角之和等于两直角。在其他情况中也相同。
我们借助普遍知识思考特殊事物,但借助只为它们特有的知识则不能知道它们。因为关于它们,很可能发生错误,不是因为我们有关于它们的相反的知识,而是因为尽管我们拥有关于它们的普遍知识,但却在特殊知识中犯了错误。
在上面提到的情形中也一样。与中项相关的错误并不与通过三段论获得的知识相反对,关于两个中项中任何一个的推测也不与之相反对。没有什么阻止一个人既知道A属于所有B也知道B 属于C,但却认为A不属于C。例如,如果他知道骡子都是不孕的,而X是骡子,那么他就可能认为X是能孕的。因为他不知道A属于C,除非他把两个前提联系起来加以考虑。因此,很清楚,如果他知道一个但不知道另一个,则他也会发生错误,这就是普遍知识与特殊知识的联系。如果可感对象出现在我们的感觉之外,我们就不知道它甚至即使我们实际感知到它,也不知道它除非将普遍知识与适合于那个对象的特殊知识的拥有(而不是现实)相结合。知道一个对象可以说有三种方式,或借助普遍知识,或根据特殊知识以及在现实中,因而犯错误也可以具有三种方式。
因此,没有什么阻止一个人既知道又不知道同一件事情,只是不是在相反的意义上。如果一个人只是孤立地知道前提,并且以前没有考虑到这个问题,那么这确实是会发生的。在推测骡子是否能受孕时,他实际上并不拥有这方面的知识,但同时这种推测并不使他的错误与他的知识相反;因为与普遍知识相反的错误是三段论。
另一方面,把善的本质认作是恶的本质的人会认为善的本质与恶的本质是一样的。让A表示“善的本质”,B表示“恶的本质”,让C再表示“善的本质”。这样,由于他认为日和C是相等同的,他也会认为C是B,再者以同样的方式可得出B也是A,因此,C也是A。以前说过,如果B述说C是真实的,A述说B是真实的,则A述说C也是真实的。思想的情况就是这样。存在的情况也相同。如果C和B是等同的,B和A也是等同的,则C与A亦相等同。因而,同样的道理也适用于观念的情况。那么,如果一个人承认了原来的断定,这就是一个必然的推论吗?但是根据推测,一个人认为善的本质即是恶的本质是假的,除非出于偶然情况。这可以从几种意义上来考虑,我们必须把这个问题考虑得更详尽些。
【22】当端项可以换位时,中项必定也随着它们两个而换位。如果A通过B而属于C,如果这种联系可以换位,C属于A所属于的事物的全体,则B与A换位,并且通过以C作中词属于A所属于的事物的全体,C也通过以A作中词,与B换位。当三段论是否定的时,情况也这样。例如,如果B属于C,但A不属于B,则A也不属于C。因而如果B与A换位,C也与A换位。设定B不属于A,则C也不属于A,因为B被设定属于所有C。除此而外,如果C与B换位,则它也与A换位,因为当B述说全体时,C亦然。再者,如果C与A的联系可以换位,则B与A的联系也可以换位。因为,C属于B所属于的事物,C则不属于A所属于的事物。这是从结论开始的唯一的例证,其余的则在这方面不同于肯定三段论。
再者,如果A和B是可换位的,C和D也同样是可换位的,要么A、要么C必定属于一切事物;同样,C和D也必定如此联系以至于其中有一个必定属于全体。因为B属于A所属于的事物,D属于C所属于的事物,要么A、要么C必定属于全体,但不会两者都同时属于全体。所以很显然,要么B、要么D必定属于全体,但不会两者都同时属于一切。例如,如果没有生成的东西是不能消灭的,不能消灭的东西是没有生成的,则有生成的东西必定是可消灭的,可消灭的东西必定是有生成的,我们在这里得到了两个三段论。再者,如果要么A、要么B(但不是两者同时)属于全体,C和D也一样。如果A和C是可换位的,则B和D也同样。因为如果B不属于D所属于的有些事物,那么很显然A属于它,如果A属于,则C也属于,因为它们是可以换位的。所以C和D两者也同时属于,但这是不可能的。
当A属于B的全体和C的全体。并且不述说其他事物时,B也属于所有C时,A和B必定是可换位的。因为A只述说于B和C,B既述说它自身又述说C,那么很显然,B也述说A所述说的一切主项,除了A自身而外。
再者,当A和B属于C的全体,C可与B相换位时,A也必然属于所有B。由于A属于所有C,C通过换位属于B,则A也属于所有B。
如果在A、B这两个相对立的选择项中,A优于B,则D也优于C,如果AC优于BD,则A优于D。追求A的程度与回避B的程度相同(因为它们是相对立的),C和D的情况也同样(因为它们也是相对立的)。因而,如果A的可选择性与D的可选择性相等,则B的可回避性与C的可回避性相等。既然在可回避性与可追求性方面每一个与另一个是相等的,所以,AC与BD是同样可追求的。但是由于AC优于BD,所以它不可能是同样可追求的。否则,BD也将是同样可追求的。如果D的可选择性大于A,则B的可回避性也小于C,因为小的一端与小的一端相对立。较大的善与较小的恶的可选择性比较小的善与较大的恶要强。所以BD的可选择性大于AC,但其实不然,所以A的可选择性大于D,C的可回避性小于B。
如果一个情人在爱情的影响下想要他的被爱者使他满意(A)而未能做到(C),而不愿他的被爱者使他满意(D),但并不是有意想这样做(B),那么,很显然,A被爱者的意向一一一比满意的行为更值得选择。所以在爱情中,相亲相爱比与情人性交更值得选择。故而爱的目的在于相亲相爱,而不是在于性交;如果相亲相爱是爱情的主要原则,那么它也是爱的目标,故而性交或者根本不是目标,或者只是从感受到亲昵这一角度说才是的。其他各种欲望和技术的情况与此相同。
【23】 词项在什么样的条件下才能转换,并且表示可选择或可回避的程度,我们就清楚了。实际上,不仅辩证的证明的三段论是通过已经描述过的格产生,并且修辞三段论及一般而言的每种理智信念都是,不管它们采用什么形式。因为我们的一切信念要么是通过三段论要么是从归纳中形成的。归纳或归纳推理,就是通过另一个端项确立一个端项与中项的联系;例如B是A和C的中项,通过C证明A属于B,我们就是这样进行归纳证明的。例如,让A表示“长寿的”,让B表示“无胆汁的东西”,C表示“长寿的个体”,如人、马、骡子等。A属于C的全体(因为每个无胆汁的动物都是长寿的),但B“无胆汁的”也属于所有C。如果C与B换位,即如果中项在广延上并不更宽,则A必定属于B。上面已经证明,如果任何两个谓项属于同一个主项,端项可与其中一个换位,则另一个谓项也属于可换位的词项。但是,我们把C理解作一切特殊事例的总和;归纳就是通过它们进行的。
这类三段论跟第一个或直接的前提相关。中词存在时,三段论是通过中词进行的;中词不存在时,它是通过归纳进行的。在一种意义上归纳与三段论相对立,因为后者通过中词证明大项属于第三个词项,而前者通过第三个词项证明大项属于中项。因此,从本性上说,通过中项而进行的三段论是在先的,更为可知的,通过归纳而进行的三段论对我们来说更为显明。
【24】当大项通过一个相似于第三个词项的词项被证明属于中项时,我们就获得了一个例证。必须既知道中项属于第三个词项,又知道第一个词项属于与第三个词项相似的词项。例如,假设A表示“坏”,B表示“对邻邦发动战争”,C表示“雅典反对忒拜”,D表示“忒拜反对福奥克斯”。那么,如果我们想要证明反对忒拜的战争是坏的,我
们必须认定对邻邦发动战争是坏的,其证据可从相同的例证中得出,例如,忒拜反对福奥克斯的战争是坏的。因为反对邻邦的战争是坏的,反对忒拜的战争就是反对邻邦的战争;所以很显然,反对忒拜的战争是坏的。很显然B属于C和D(因为它们两者都是对邻邦发动战争的例子),A属于D(因为反对福奥克斯的战争对忒拜也没有好处);但A属于B将通过D而被证明。假如我们的中项与端项相连这一信念是从许多个词项中得出的,则可获得同样的方法。
因此,很显然,当两者都属于同一个词项,其中一个被知道时,则一个例证所代表的不是部分与整体,或整体与部分的联系,而是一个部分与另一个部分的联系。它与归纳不相同。归纳是从对全部个别情况的考虑表明大项属于中项,并不把结论与小项相联系。相反,例证与它相联系,也并不使用所有个别情况来作证明。
【25】我们在下面的情况下化简:在第一项显然属于中项,而中项属于最后一项则不明显,但尽管如此,却比结论更为可能或者可能性不少于结论时,或者如果在最后项与中词之间只有很少的间接词项时,因为在所有这些情况中,结论都使我们接近知识。例如,让A表示“可教的”,B表示“知识”,C表示“公正”,则知识可教,这是很明显的。但德性是否是知识则不明显。这样,如果BC与AC同样可信或者比AC更可信,我们就具有化简,因为我们引入了另外一个词汇,与知识接近了。而以前我们则不知道AC是真的。
如果在B和C之间没有许多间接的词项,那我们也会有化简,因为在这种情况下,我们也接近了知识。例如,如果D表示“正方形”,E表示“直线形”,F表示“圆”,如果在E和F之间只有一个间接的词项圆通过半月状变得与一直线形相等我们就接近了知识。但是,如果BC并不比A