然”。否则,它就是不可能的、无用的、没有意义的,再不,正如我们在我们的傲慢的历史心灵中常常说的,就是“原始的”。近代数学尽管只对西方精神而言是“正确的”,但也不容否认的是,它是这一精神的主导产品;不过,对于柏拉图而言,它必定是对通向“真实”——通向智慧,古典的智慧——的道路亦即数学的不可思议的和可怕的偏离。对于我们自己来说,希腊人的数学也是如此。坦白地说,我们对大量属于其他文化的伟大观念几乎是一无所知,我们容许这样的失误,是因为我们的思维及其局限还不允许我们去同化它们,或者说(其实是一回事),我们的思维及其局限使我们将它们看作是虚假的、多余的和无意义的东西而加以拒绝。
第二章 数字的意义(2)
六
希腊数学,作为一种有关可感知的量的科学,蓄意把自己限定在可理解的当下在场的事实上,把它的研究和这些研究的有效性局限在近旁的小事物上。与这一数学无懈可击的一致性相比较,西方数学的立场被认为实际上有点非逻辑的味道,尽管只是自非欧几何发现以来,这一事实才真正地被认识到。数是完全非感觉化的理解的意象,是纯粹思想的意象,其本身之中就包含有抽象的有效性。因此,数能否确实地运用于意识经验的现实性,这本身便是一个问题,并且是一个不断地被重新提出而从未获得解决的问题,而数学体系与经验观察之间的符合,在目前还只能视作是自明的。尽管门外汉的观念——例如在叔本华身上所看到的——认为数学有赖于感官的直接证据,但欧几里得几何学——虽则表面上看,其与所有时代通行的几何学是同一的——与现象世界仅仅是近乎吻合,且是在非常狭窄的范围内——事实上是在画图板的范围内——才近乎吻合。扩大这些范围,则——例如——欧几里得的平行线将会变成什么?它们会在地平线上相交——我们一切的艺术透视就是建立在这一简单的事实之上的。
因此,康德是一位西方思想家,他回避了有关距离的数学,而诉诸一组数字例证,而对于它们的绝对细分,他认为尤其不能用西方的无穷小的方法来处理,他这样做并不矛盾。但是,欧几里得是一位古典时代的思想家,当他禁止通过参照——比如说——由一个观察者和两个无穷远的恒星所构成的三角形来证明他的公理的现象真理时,这与古典时代的精神是完全一致的。因为这些东西既不能被画出来,又不能“直观地领会到”,他的感受恰恰是害怕无理数的感受,是不敢给予像零这样的虚无以一个价值(例如,说它是一个数),甚至在沉思宇宙关系时也不敢直视无穷大,而只能固守着它的比例的象征的感受。
萨摩斯岛(Samos)的阿里斯塔库斯在公元前288至前277年间属于亚历山大里亚的天文学家圈子,这个圈子无疑与迦勒底…波斯学派有关系;阿里斯塔库斯曾提出了一个日心说的世界体系。经过哥白尼(Copernicus)的再发现,这一日心说的体系将动摇西方人的形而上情感的基础——乔尔丹诺·布鲁诺即是明证——将成为强有力的预兆的完成,并将证明浮士德式和哥特式的世界感,这种世界感早已经通过哥特式大教堂的形式而体现了对无限的信仰。但是,阿里斯塔库斯当时的世界对他的著作根本漠不关心,因此很短的时间里就被遗忘了——我们可以推测,这是故意的。他的为数不多的追随者几乎全都是小亚细亚的本土人,其中最著名的支持者塞琉古(Seleucus)(约公元前150年)来自底格里斯河流域的波斯的塞琉西亚(Seleucia)。事实上,阿里斯塔库斯的体系在精神上根本没有诉求于古典文化,它其实对后者构成为一种威胁。不过,这一体系与哥白尼的体系在某个方面有根本的不同(这一点常常被人忽视了),正是这个方面使得前者完全符合古典的世界感,那就是:它假定,宇宙是包含在一个物质上有限和视觉上可感的球状虚空(hollow sphere)中的,在这球状虚空的中间是行星系统,其排列和运行正如哥白尼的路线。在古典天文学中,地球和天空中的其他星体被一致地认为是两种不同的实体,不论对其运动的具体细节的解释是多么的多样。同样地,相反的观念认为,地球只是众星体中的一种,这一观念本身与托勒密式的体系或哥白尼式的体系并非格格不入,事实上,它的真正先锋是尼古拉·库萨(Nicolaus Cusanus)和列奥纳多·达·芬奇(Leonardo da Vinci)。但是,由于天球(celestial sphere)这一概念的发明,那本来可能危及感受性的古典文化的有边界的观点的无穷大原则便被掩盖了。也许有人会认为,无穷大的概念是阿里斯塔库斯的体系所必然隐含的——而事实上,早在他的时代之前,巴比伦的思想家就已经抵达了这个概念。但希腊全无此等思想出现。相反,在阿基米德著名的有关沙粒的论文中,他证明说,用沙粒填满一个立方体的物体(这根本上就是阿里斯塔库斯的宇宙),便可得到一个非常高但决不是无穷的图象结果。他的这一命题尽管一再被引用,认为是向积分学迈出的第一步,但其本身原是对我们所谓的“分析”概念的一种否定(实际上,在论文的标题中就已经隐含了这一点)。在我们的物理学中,不断出现的一种有关物质性的(或者说可直接感知的)以太的假设,一次又一次地与我们拒绝承认任何物质性的边界的做法相冲突;欧多克斯、阿波罗尼乌斯(Apollonius)和阿基米德当然是最敏锐、最大胆的古典数学家,他们主要用直尺和圆规,对既成之物完全地进行纯视觉的分析,而其基础,便是古典的雕塑式的边界概念。他们运用经过深思熟虑而得出的(可对我们来说几乎是不可理解的)求积的方法,但这些方法与莱布尼茨的定积分方法甚至只有表面的相似。他们也运用几何轨迹和坐标系,但这些通常都是度量的一些被明确的长度和单位,而不是——如同在费马(Fermat)、尤其是在笛卡儿那里——未被明确的空间关系,不是依据点在空间中的位置而定的点的价值。在所有这些方法中,还要特别地提一下阿基米德的穷竭法(exhaustion method),在最近发现的阿基米德致厄拉多塞尼(Eratosthenes)的信中,他论及了用内接矩形(而不是相似的多边形)求抛物面的截面积的方法。但是,这一极端精密复杂的方法,仍是基于柏拉图的某些几何学观念,虽然表面上与帕斯卡尔的方法有可类比之处,但两者之间还是有极大的不同。其与黎曼的积分观念也截然相异。那么,阿基米德的这些观念与今日所谓的求面积法有着何样的尖锐对立?阿基米德的方法本身,如今不过是一种不幸的残余,它所谓的“表面”(surface),如今已被代之以“封闭函数”(bounding function),而它所用的描画法(drawing),如今也已经消失。古典和西方的数学心灵彼此间从未像在此例中如此的接近过,也从未像在此例中如此明显地显示出这两种心灵之间的隔阂之深,根本不可能彼此沟通。
在其早期建筑的立体风格中,埃及人可以说隐藏了纯粹的数字,他们害怕突然触及到数字的秘密,而对于希腊人而言,数字也是既成之物、僵硬之物、有限之物的意义的关键。石像和科学体系否定了生命。数学的数字,现象性的生存——它只是醒觉的人类意识的派生物和仆人——所依存的广延世界的形式原则,带有因果必然性的标记,因此与死亡是联系在一起的,如同编年学的数字是与生成、生命、命运的必然性联系在一起的一样。严密的数学形式与有机存在的终结、与有机存在的有机剩余物即肉体的现象之间的这种联系,我们将越来越明确地看作是所有伟大艺术的源头。我们已经注意了丧葬器物和棺木的早期装饰的发展。数字是死亡的象征。刻板的形式是生命的否定,公式和定律把死板板的谨严性散播在自然的面孔上,数字制造了死亡——在《浮士德》第二部中,“女神们”端坐在宝座上,庄严而又隐忍,她们唱道:
奇幻难形笔楮,
焕然竟成文章;
永恒女性自如常,
接引我们向上。
在对终极的奥秘作如此的神圣化时,歌德与柏拉图非常相近。因为他的不可接近的女神们就是柏拉图的理念——是一种精神的可能性,是有待实现的孕育中的形式,它们作为能动的和有目标的文化,作为艺术、思想、政治与宗教,存在于由那一精神所规范和决定的世界中。所以,一种文化的数字思想和世界观乃是关联在一起的,由此关联,前者被提升到单纯的知识和经验之上,成为一种宇宙观。因此,世上有多少种高级文化,便有多少种数学,便有多少种数字世界。只有这样,我们才能理解一个必然的事实,即那些最伟大的数学思想家、那些数字领域中最伟大的创造性的艺术家,每每要经由一种深沉的宗教直觉,才能获得他们的诸文化中最为关键的数学发现。
我们必须把古典的、阿波罗式的数字看作是毕达哥拉斯的创造物——是他创立了一种宗教。那位伟大的布列克森主教(约1450年),尼古拉·库萨,也是经由一种直觉的引导,才从自然中上帝的无限性的观念得出了微积分的原理。莱布尼茨在两个世纪之后明确地奠定了微积分的方法和记号法,而他自己也是经由对神圣的原则及其与无穷的关系作纯粹形而上的沉思的引导,才体会和发展出位置分析(analysis situs)的概念——这可能是对纯粹的、获得解放的空间的所有阐释中最具启示性的——后来,格拉斯曼(Grassmann)在他的《扩张论》(Ausdehnungslebre)中对位置分析的可能性作了进一步的发展,尤其黎曼用双面的平面来描述方程的性质的象征主义,使得他成为了那种种可能性的真正创造者。还有开普勒(Kepler)和牛顿,他们也都具有严格的宗教气质,且和柏拉图一样,都曾经或一直深信,只有经由数字作为媒介,他们才能直觉地领会到神圣的世界秩序的本质。
七
我们常常被告知,古典算术经过丢番图才第一次摆脱其感觉束缚,在广度和深度上有所深入。可实际上,丢番图并没有创造代数学(未知量的科学),而只是把代数学带入了我们所知的古典数学框架的表达。而且他的成就是如此之突然,以致我们不得不假定,他能有那样的成就,是因为已经有了一个先行存在的观念储备。但是,这并不意味着他的成就丰富了古典的世界感,而只是彻底地胜过了它而已,这一简单的事实本身就足以说明,丢番图本质上根本不属于古典文化。在他身上发挥作用的,乃是一种新的数字感,或者不妨说,是对实存之物和既成之物的一种新的限度感,并且也不再是希腊人的产生了欧几里得几何学、裸体雕塑和钱币的那种在场感觉的限度感。对于这一新数学的形成的具体细节,我们所知甚少——丢番图就这样独自矗立在所谓晚期古典数学的历史中,以至于有人猜测他受到了印度数学的影响。但是在此,这一影响实际上也是早期阿拉伯学派——迄今为止,人们对这些学派的研究成果(决非教条的)的探讨还是十分不完整的——的影响。在丢番图那里——尽管是无意识的——他本质上使自己走向了他企图建立的古典基础的对立面,在欧几里得式的意向的表面之下,浮现出来的乃是一种新的限度感,我们称之为“麻葛式的”限度感。丢番图不但没有扩大数作为一种度量的观念,反而(不明智地)消除了这一观念。没有一个希腊人能够对一个未知(undefined)数a或一个无名(undenominated)数3给出任何的表述——因为它们既非数量,亦非数列——而丢番图的新的限度感则通过这类数获得了感性的表达,它们即便没有构成丢番图的论述本身,至少也为这一论述奠定了基础;我们现今用于武装我们自身的(经过再次重估)代数学的字母记号体系,是1591年由维塔(Vieta)首先引入的,这毫无疑问——尽管不是故意的——是为了对抗文艺复兴时期的数学中的古典化倾向。
丢番图生活在大约公元250年,也就是阿拉伯文化的第三世纪,这一文化的有机历史,直到今天仍被窒息在罗马帝国和“中世纪”的表面形式之下,可在那时,它包容了后来属于伊斯兰的地区的在我们的纪元开始之后所发生的一切。恰恰是在丢番图的时代,阿提卡雕塑艺术的最后身影已经变得苍白无力,随后便是我们在早期基督教…叙利亚风格中看到的圆顶、马赛克和石棺浮雕的新的空间感。在丢番图的时代,古